



Fig. 6. Circuit arrangement for high power measurements.

where P is the power supplied and W is the energy stored. For a composition of 90.2 per cent BaTiO₃ of $\epsilon_r' = 35$ and $\tan \delta = 1/36$, the peak electric field is 7.8 kV/cm for an input power of 3.5 kW. The value of $\Delta f'/\Delta f$ necessary for large gain can be estimated as follows.

For large gain, the negative conductance presented to the signal circuit is equal to its conductance G_{T1} . Then [6]

$$G_{T1} = \frac{\omega_1 \omega_2 C_s^2}{4G_2}.$$

Let C_p be the capacitance of the cavity at the pump frequency f_p and let ΔC be the capacity swing for the half-power points. Then

$$\frac{C_s}{\Delta C} = \frac{Q_p}{C_p} \sqrt{\frac{G_2 G_{T1}}{\omega_1 \omega_2}} \quad (5)$$

where Q_p is the Q of the cavity at the pump frequency.

Beringer [7], considering the equivalent circuit of a lossless, unperturbed cavity to be a LC circuit, derives the following expressions for the equivalent capacitance C_a and inductance L_a of the cavity, $C_a = \epsilon / K_a^4 V$ and $L_a = \mu K_a^2 V$ where V = volume of the cavity and

$$K_a = \omega_a \sqrt{\mu \epsilon} \quad (6)$$

The cavity has a number of normal modes which are the periodic solutions of Maxwell's equations. Each of the modes is characterized by a resonant angular frequency ω_a .

$$\text{Let } f_3 : f_2 : f_1 = 3 : 2 : 1 \quad (7)$$

Substitution of (7) in (6) results in

$$C_p = \frac{4}{81} \sqrt{C_s C_a} \quad (8)$$

Substitution of this value of (8) in (5) gives us

$$\frac{C_s}{\Delta C} = 20.25 \sqrt{\frac{Q_p}{Q_s Q_a}}$$

the subscripts i and s refer to the idler and signal frequencies, respectively. Assume $Q_p = Q_s Q_a$, then $\Delta f'/\Delta f = 20.25$. For large gains approaching oscillation, the ratio of $\Delta f'/\Delta f$ should be 20, but some gain is to be expected when this ratio is lower than 20.

ACKNOWLEDGMENT

The author is very much indebted to Dr. L. R. B. Elton, D.Sc., Head of the Physics Department, Battersea College of Technology, London, for providing facilities for this work, and to Dr. K. W. H. Foulds for supervising his Ph.D. dissertation [8] on which this report is based.

S. N. DAS
Dept. of Elec. Engrg.
Clarkson College of Technology
Potsdam, N. Y.

REFERENCES

- [1] Marcuvitz, N., *Waveguide Handbook*, 1st ed., New York: McGraw-Hill, 1951, p. 226.
- [2] National Bureau of Standards, Table of Bessel Functions $J_0(Z)$ and $J_1(Z)$ for Complex Arguments, New York: MTP, Columbia University Press, 1947, p. 22.
- [3] Cassedy, E. S., Jr., A surface wave parametric amplifier, *Proc. IRE*, vol. 47, Aug 1959, pp 1374-1375.
- [4] Horner, F., et al. *J. IEE*, vol. 93, pt 4, Jan 1946, pp 53-68.
- [5] Das, S. N., Quality of a ferroelectric material, *IEEE Trans. on Microwave Theory and Techniques*, MTT-12, Jul 1964, pp 440-445.
- [6] Heffner, H., and G. Wade, Gain, band width and noise characteristics of the variable-parametric amplifier, *J. Appl. Phys.*, vol. 29, June 1958, pp 1321-1331.
- [7] Montgomery, C. G., et al., *Principles of Microwave Circuits*, MIT Radiation Lab. Series vol. 8, Cambridge, Mass. New York: McGraw-Hill, 1948, p 221.
- [8] Das, S. N., Application of ferroelectricity to parametric amplification, Ph.D. dissertation, London University, London, England, 1962.

A Plea for Clarity in Waveguide Designation

Apparently the use of letters to designate waveguide sizes [1] or frequency bands [2] is deeply ingrained in the microwave field. In addition, a number of standardization systems exist such that one may find an amazing number of different numbers and letters to describe a single size of waveguide. It may be noted in passing that the situation is worse for waveguide flanges.

In Table I, (pp 248-249) the International Electrotechnical Commission [3], British RCSC [4], American Military [5], American Civil EIA [6], and NATO [7], designation systems are tabulated along with the code letters used by American, British, European, and Japanese waveguide equipment manufacturers to designate the different sizes of rigid rectangular waveguide of approximately 2 to 1 dimension ratio.

The confusion caused by using letter designations is obvious while the different designation systems can hardly be said to contribute to clarity in specification. At this point it is felt that a plea should be entered for the IEC system: it has been worked out by an international organization and it is available in English and French for both English and metric measurement systems [3]. It is suggested that all specifications should carry the IEC designation in addition to any other system used. For example: "The instrument is available in RG-67/U (153 IEC-R 100 aluminum) waveguide." Such usage would certainly further international understanding in what is now a muddle of confusing waveguide designations.

M. M. BRADY
Norwegian Defence Research
Establishment
Kjeller, Norway

REFERENCES

- [1] Anderson, T. N., Waveguide alphabet soup or KXCSLP, *Microwave J.*, vol 4, no 5, May 1961, pp 42-43.
- [2] Lewin, L., Letter symbols to designate microwave bands, *IEEE Trans. on Microwave Theory and Techniques (Correspondence)*, vol MTT-12, Sep 1964, p 551.
- [3] Hollow metallic waveguides, pt 2: Relevant specifications for ordinary rectangular waveguides, Publication 153-2, International Electrotechnical Commission, Geneva, 1964. Available from national committees or: Bureau Central de la Commission Electrotechnique Internationale, 1, rue de Varembe, Geneva, Switzerland.
- [4] Ministry of Defence, Defence Specification DEF-5351, Specification for Tubing, Waveguide, Her Majesty's Stationery Office, London, Jun 1959, reprinted with amendments Oct 1961. Available from: Her Majesty's Stationery Office, York House, Kingway, London, W.C. 2, England.
- [5] Department of Defence, Military Standardization Handbook, RF Transmission Lines and Fittings, MIL-HDBK-216, Defence Supply Agency, Washington, Jan 1962. Available from: Naval Supply Depot, 5801 Tabor Ave, Philadelphia, Pa.
- [6] Recommended Standards, Waveguides Rectangular (WR10-WR2300), Publication RS-261, Electronic Industries Association, New York, Apr 1962. Available from: Electronic Industries Association, Engineering Department, 11 West 42 St, New York 36, N. Y.
- [7] North Atlantic Council, Standards for Waveguides, rigid, rectangular, Publication STANAG 4035, NATO, Paris, 1964. Available from: Electronics Section, OTAN/NATO, Paris XVII, France.

TABLE I

FIVE RIGID RECTANGULAR WAVEGUIDE DESIGNATION SYSTEMS AND BAND AND WAVEGUIDE SIZE LETTERS IN USE BY DIFFERENT AUTHORITIES AND MANUFACTURERS. ONLY INSIDE DIMENSIONS ARE GIVEN, BECAUSE OUTSIDE DIMENSIONS VARY BETWEEN THE

Inside Dimensions		Cutoff freq MHz	IEC 153	IEC-R ()	RCSC WG ()	JAN RG-()/U				
width in	height in					copper or brass	alumi- num	magne- sium	silver	silver plated
23.000	11.500	256.5838		3	0.0		290			
21.000	10.500	281.0203		4	0		291			
18.000	9.000	327.8571		5	1		201			
15.000	7.500	393.4285		6	2		202			
11.500	5.750	513.1676		8	3		203			
9.750	4.875	605.2746		9	4		204			
7.700	3.850	766.4191		12	5		205			
6.500	3.250	907.9119		14	6	69	103	206		
5.100	2.5500	1157.143		18	7					
4.300	2.1500	1372.425		22	8	104	105	207		
3.500	1.750	1686.122			9					
3.400	1.7000	1735.714		26	9A	112	113	208		
2.8400	1.3400	2077.852		32	10	48	75	167		
2.613	1.1614	2258.494		35						
2.372	1.122	2487.905			11					
2.2900	1.1450	2576.865		40	11A					
2.2441	0.9972	2629.759		41						
1.8720	0.8720	3152.392		48	12	49	95	168		
1.5900	0.7950	3711.222		58	13					
1.3720	0.6220	4301.184		70	14	50	106	169		
1.1220	0.4970	5259.702		84	15	51	68	170		
0.9000	0.4000	6557.141		100	16	52	67	171		
0.7500	0.3750	7868.570		120	17					
0.6220	0.3110	9487.705		140	18	91		172	107	
0.5100	0.2550	11571.43		180	19					
0.4200	0.1700	14051.02		220	20	53	121	173	66	
0.3400	0.1700	17357.14		260	21					
0.2800	0.1400	21076.53		320	22				96	271
0.2240	0.1120	26343.80		400	23				97	272
0.1880	0.0940	31391.88		500	24					
0.1480	0.0740	39876.63		620	25				98	273
0.1220	0.0610	48369.23		740	26				99	274
0.1000	0.0500	59014.27		900	27					
0.0800	0.0400	73767.84		1200	28				138	278
0.0650	0.0325	90791.19		1400	29				136	276
0.0510	0.0255	115750.0		1800	30				135	275
0.0430	0.0215	137267.6		2200	31				137	277
0.0340	0.0170	173491.0		2600	32				139	

TABLE I (Cont'd)

SYSTEMS. EXCEPT FOR WG 9 AND WG 11 RCSC SIZES, ALL DIMENSIONS ARE THOSE GIVEN BY THE IEC. THE CUTOFF FREQUENCY IS COMPUTED USING A SPEED OF LIGHT OF $c=299792.5$ KM/SEC.

EIA WR-()	NATO NWG []						Band and Size Letters Used
	Copper 2A()	Brass 3A() 4A()	Aluminum 1A()	Magnesium 5A()	Silver 6A()	Silver Pres 6A()	
2300							P
2100							J, N
1800			01				J
1500			02				H
1150			03				F
975			04				E
770			05				D
650	06	06	06				L
510	07	07	07				
430	08	08	08				LS, M, R
340	09	09	09				MS
284	10	10	10	10			S
229	11	11	11				SC
187	12	12	12	12			C, G, H
159	13	13	13				C, CA
137	14	14	14	14			A, C, G, J, XB, XN
112	15	15	15	15			B, H, W, XB, XL
90	16	16	16	16			X, XS
75	17	17	17				M, XG
62	18	18	18	18			G, KU, P, U, Y
51	19				19		
42	20	20	20	20	20		K
34	21				21		
28	22				22	37	A, KA, R, T, U, V
22	23				23	38	B, Q, V
19	24				24	39	F
15	25				25	40	M, V, W
12	26				26	41	E, Z
10	27				27	42	W
8						43	F, N
7						44	
5						45	A, G
4						46	
3						47	R